[작성자 및 발표자 : 김모경] 1. 벡터화 일반적으로 평소에 코딩할 때 for문을 정말 자주 사용하는데, 딥러닝의 구현에 있어서는 for문의 사용은 코드 실행을 느려지게 만들 수 있습니다. numpy 내장함수를 사용하게 되면 for문을 사용할 때보다 훨씬 빨라질 수 있습니다. 그렇기 때문에 일단 for문을 쓰고 싶다면 그 공식을 쓰지 않고 numpy 내장 함수를 사용할 수 있는지 먼저 확인을 해야 합니다. 만약 코드를 벡터화하지 않는다면, 위와 같이 Z = wx + b를 구현하기 위하여 z = 0으로 초기화시킨 후 for문을 반복적으로 계산해야한다. 반면, 코드를 벡터화했을 경우에는 파이썬의 라이브러리 함수를 통해 위와 같이 간단하게 한 줄로 표현가능하다. 위 코드는 로지스틱 회귀의 도함수를 구하는 코..